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Motivation

@ The idea of tipping points is important for topics as diverse as
segregation, marketing, rioting, and global warming.

@ Robustness considerations have extended beyond engineering
and ecology to social institutions, political regimes, computer
algorithms, decision procedures, and many more.

@ These are not single, unambiguous concepts.

@ The multiple distinct phenomena in these families of behavior
are referred to using the various terms interchangedly.

@ These distinct concepts have not been generally and formally
defined, and doing so can make the terms’ uses across these
various applications consistent and comparable.



Motivation
@ Complex systems analyses need to capture processes rather

than a series of static snapshots.

@ Existing statistical techniques are ill-suited to measure
properties of system dynamics.

@ Developing techniques to measure these features could
provide a means to compare models across disciplines.

@ Provides a conceptual benefit for understanding and
categorizing system behaviors.

@ Makes the inventor very popular at social gatherings.



Outline of Talk

@ Comments on the general methodological approach.
@ Building a Markov model from system output.

@ Example using the Schelling Segregation agent-based model.
@ ldentifying the features of general system dynamics.

@ Defining and measuring tipping point phenomena.

@ Defining and measuring robustness family phenomena.

@ Closing remarks and future work.



General Approach

@ This technique is part of a larger project to develop new
analysis methods for measuring system behaviors.

@ Represent the system features, output data, interactions, etc.
in a way that captures the systems’ dynamics in a static structure.

@ Apply existing measures from that static structure to this
representation to reveal novel aspects of system behavior.

@ Use insights gained from this translation to develop new
measures for the adapted static structure.

@ Feed these back to the original model for additional insights,
and foster development of analogous measures in other
representations.



Bui|ding 3 Markov Model

@ Markov models are comprised of a set of states and the
probabilistically weighted transitions among those states.

@ The Markov model representation must be built in a specific
way to run the properties of system dynamics analysis.

@A state in the Markov model is a complete specification of the Q aspects
of one configuration of the system.

Si = {Xim. X200, . . .XQh)}

@Example: If our system is an iterated game played by six players each with four
possible actions then each state of the system has six aspects and each aspect
takes on one of four values. That is S = {a(Plm), a(P2w), . . .., a(Péw)}

and a particular state 53 might be {as, az, as, a1, a4, as}.
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Building 3 Markov Model
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Bui|ding 3 Markov Model

@ And that’s not alll!l By using the frequency of transitions
from your data you can produce the desired Markov model
representation of your system’s dynamics.
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Thomas C. Schelling

@ Father of Agent-Based Modeling

@ 2005 Nobel Prize Winner in Economics
for work in Game Theory
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Schelling Seqregation Model

@ There are two types of agents and they have a percentage
of neighboring agents that they want to be of the same type.

@ The neighbors are agents in any of the eight
surrounding spaces of the grid.

@ Unhappy agents move around to empty
spaces until they are happy.

@ Once all the agents are happy
the model stops running.




Schelling Seqregation Model

@ We want to foster greater diversity by managing to outcomes
with less segregation.

@ In order to influence the dynamics we
must first understand them.

@ Which initial configurations
lead to which outcomes?

@ Which states play pivotal
roles in determining outcomes?

@ Given the current actual state,
what can we expect the outcome to be?



Paths and Cycles

@A path is an ordered collection of states and transitions such that from each state
there exists a positive probability to transition to the successor state within the
collection. A path from Si to $j denoted “5(5i, §;j) is the set of states § such that

(i) so=Sin$
(ii) There exists T such that for allt < T P(st+1in §|stin§) > O
(iii) sT=5;in §
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Landmarks in System Dynamics

@ A system state that always transitions to itself is called an equilibrium or
stable state. An equilibrium ei is a state Si such that P(st+1 = Si|st = i) = 1.

@ Those states from which the system will eventually move into a specific attractor
are said to be in that attractor’s basin of attraction. The basin of Ai or B(Ai) is a
set of states § such that there exists an h > 0 P(st+h = Ai|stin §) = 1.

@ The support of a state (also known as its in-component) is the set of states
which have a path to it.

support of A1

ll Attractors

I Basin of A

] Basin of Aas

[] In Support of A1




Landmarks in System Dynamics

@The overlap of a collection of states is the set of states in all of their
in-components (i.e. the intersection of thier supports).

@ A state’s out-degree is the number of distinct successor states (states that

may be immediate transitioned into). The out-degree ki of state Si equals
| {Si : P(st+1 = §j |sc = 55) > O}.

@ S5k will be used to denote a neighboring state and Sk the set of neighboring states.
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Landmarks in System Dynamics

@The reach of a state (also called its out-component and written R(Si)) is the set of
states that the system may enter by following some sequence of transitions; i.e. all
possible future states given an initial state.

@ Every successor state’s reach is less than or equal to the previous state’s reach.
For every i and j, ~(Si, §j) implies |R(Si)| = |R(S))].
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Landmarks in System Dynamics

@A core of a set is a subset wherein every member of the subset is in the
reach of every member of the subset. This is the strongly connected component of
a selected collection of states.

@ Some sets will have multiple cores — the set of §'s cores can be called §'s mantle.

@ The perimeter of a set is the collection of those states in the set that may
transition to states outside the set. That is, S such that P(st+1 not in §|s:in §) > 0

B Coreof S
] Core of S
] Core of S
[ ] Core of S
] Core of S
] Mantle of Cores of S




Summary of Landmarks

@ Attractor - positive recurrent set of states

@ Basin - set including exactly one attractor

@ Support - set having a path to some focal state or set
@ Reach - the states that some focal state has a path to
@ Core - positive recurrent subset of a set

@ Mantle - set of cores of a set

@ Perimeter - states with transitions exiting a set



Levers and Thresholds

@The levers of a state are the aspects of a state such that a change in those

aspects is suffcient to change the system’s state.

@A lever point is a transition resulting from a change in a particular aspect

(or set of aspects).

@ The strength of a lever is the sum of the probabilities of all transitions

that result from changing that lever.

@ A threshold or threshold point is a particular value for a lever such that
if the value of the property crosses the threshold value, it generates a transition.
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Critical Behavior

@ A transition is considered critical behavior for a property if and only if it
produces a decrease in the value of that property; ~(5i, ;) such that V(5i) > V(§j).

@ The critical-gap of a transition is the change in value across a transition.

@ A transition’s criticality is one minus the ratio of the start and end states’ value.
The criticality of ~(5i, §j) equals 1 = V(5j) / V(5i).

@ The criticality of a state is the probabilistically weighted sum of the criticality
of all the transitions from that state.
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Critical Behavior

@ As an example we can find the critical behavior of a decrease in reach;
i.e. ~(Si, §j) such that |R(Si)| > |R(S))].

@ The reach-gap of a transition is the change in the percent of the total number
of states that can be reached. This quantity equals|R(Si))|/ N — |R(S;)| / N.

@ A transition’s reach criticality of ~(Si, §j) equals 1 — |R(Sj)| / |R(Si)|.

@ The reach criticality of a state is the probabilistically weighted sum of the criticality
of all the transitions from that state.
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Tipping Behavior

@A tipping point is a state which is in the perimeter of an equivalence class
for some property. Different properties reveal different kinds of tips.

@The energy level of a state is the number of reference states (e.g. attractors,
functional states, states with high criticality) within its reach. Energy levels
partition the system’s states into equivalence classes.

@ The tippiness of a state Si is the probabilistically weighted proportional decreases
in some property over its immediate successors: 1 — Sum over j, Pij ( V(Sj) / V(5) ).

B Energy Level of 1
B Energy Level of 2
1 Energy Level of 3




Summary oFTipping Behavior

@ Lever- state aspects changes that mark state changes.

@ Lever Strength- the probability mass of a lever’s state changes.
@ Threshold- a value for an aspect that generates a state change.
@ Criticality- the change in aspects across states.

@ Tipping Point- states that may lose a property through a transition.
@ Energy Level- the number of reachable states with a property.

@ Tippiness- the expected amount of property loss.



Stable and Static

@ A state’s stability is how likely that state is to self-transition: P(st+1 = Si| st = Si).
@ The stability of a set is the probability that the system will not transition out of
the set given that the system starts within the set. We calculate this as the average

of the individual states’ exit probabilities.

@ The degree to which a set is static is the average of the states’ stability values.

D

stability set stability set staticness



Turbulence

@The turbulence of a set is the average percentage of states that its states can
transition into. We can calculate §'s turbulence with the average ratio of each
state’s degree to the number of states in $: 1/|S| Sum over Si (k/ [S])

@ As a refinement of turbulence, weighted turbulence of the state Si equals zero
if k = 1and for k > 1 can be calculated as Sum over j of 1 — (P(~(S, §j)) — I{k)
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Sustainable and Susceptible

@ The sustainability of § is the average cumulative long-term probability density
of future states that remain in the set starting from each state in the set:
1/|S| Sum over Si, Sum over t P(st+1 in §|st in §).

@ The degree to which § is susceptible to Si is how much more (or less) likely it is
to transition out of § conditional on it being in a particular state Si of §:
Sum over t P(st+1in §|st in § and so = Si) — sustainability of §.

@ Given this definition we can see that a positive susceptibility means a lower
probability to stay within §.
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Resilient and Recoverable

@ A state’s resilience is the cumulative probability of returning to a state given that
the system starts in that state: Sum over t P(s: = Si|so = Si).

@ Set resilience is the probability that the system will return to a set if the initial
state of a sequence is within the state.

@ A transition out of the set is recoverable to the degree that the system will return
to the set after the transition. $§ is recoverable from ~(Si, §j) to the degree
calculated by the Sum over t P(s:in §| ~(Si, §j) and Siin § and Sj not in §).




Reliable

@ The reliability of a set is the average cumulative long-term probability density
over the states in the set given that the system starts within that set. It is by
1/]S| Sum over Si, Sum over t P(st in §|so in S).




Robust and Vulnerable

@The robustness of a set is the average cumulative long-term probability density
over the states in the set given that the system may start at any state.
1/|S| Sum over Si, Sum over t P(st in S).

@ A set’s vulnerability at Si is the difference in the average long-term probability
density over the states in the set compared to the density generated by starting
in Si: Sum over t P(st in §|so = Si) — robustness of §.




Summary of Robustness Family

@ Static - nothing changes

@ Stable - dynamics don’t lose the property

@ Sustainability - the property is maintained next period
@ Resilience - property is regained if lost

@ Recoverable - property is regained it lost a certain way
@ Reliability - the property is maintained

@ Robustness - the property holds

@ ...and don’t forget turbulence.



Application and Expansion

@ Develop packages for Java, Mathematica, Matlab, R, etc. to
foster its usage by the research community.

@ Through collaboration, apply to data and simulation output.

@ Develop more and refined measures of the properties of
system dynamics using this Markov representation.

@ Use measure similarity to find equivalence classes for system
dynamics that can categorize processes by behavioral features.

@ Consider other representations for measures can’t be captured
this way: e.g. non-probabilistic measures of these phenomena.



Thank You
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